EE 330 Lecture 29

Bipolar Processes

- Device Sizes
- Parasitic Devices
	- JFET
	- Thyristors

Thyristors

• SCR – Basic operation

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22

Final Exam Monday Dec 16 12:00 - 2:00 PM

Two-port representation of amplifiers Review From Previous Lecture

- Amplifier often **unilateral** (signal propagates in only one direction: wlog y₁₂=0)
- One terminal is often common
- "Amplifier" parameters often used

- Amplifier parameters can also be used if not **unilateral**
- One terminal is often common

y parameters and a set of the set of the Amplifier parameters when A mplifier parameters

Relationship with Dependent Sources ?

Voltage

Amplifier

Transresistance Amplifier

 $v_{\rm s}$ = $\mu v_{\rm x}$

Voltage Dependent Voltage Source

 $I_s = \alpha v_x$

 $I_s = \beta I_x$

Transconductance Amplifier

Voltage Dependent Current Source

Current Amplifier

 $v_s = \rho I_x$

Current Dependent Voltage Source

Current Dependent Current Source

Relationship with Dependent Sources ?

It follows that

Voltage dependent voltage source is a unilateral floating two-port voltage amplifier with $R_{IN} = \infty$ and $R_{OUT} = 0$

Relationship with Dependent Sources ?

It follows that

Current dependent voltage source is a unilateral floating two-port

Dependent Sources Review From Previous Lecture

 $v_{\rm s}$ =ρΙ_x $\langle _\rangle$ I_s=βΙ_x

Dependent sources are unilateral two-port amplifiers with ideal input and output impedances

Dependent sources do not exist as basic circuit elements but amplifiers can be designed to perform approximately like a dependent source

- Practical dependent sources typically are not floating on input or output
- One terminal is usually grounded
- Input and output impedances of realistic structures are usually not ideal

Why were "dependent sources" introduced as basic circuit elements instead of two-port amplifiers in the basic circuits courses???

Why was the concept of "dependent sources" not discussed in the basic electronics courses???

Topical Coverage Change

Will have several additional lectures on amplifier structures but will temporarily suspend discussion of amplifiers to consider Thyristors

This is being done to get ready for the Thyristor laboratory experiments

Outline

Bipolar Processes

- **Parasitic Devices in CMOS Processes**
- JFET
- Other Junction Devices

Special Bipolar Processes

• Thyristors **SCR** TRIAC

Review from a Previous Lecture

B-B' Section

Review from a Previous Lecture

B-B' Section

Enhancement and Depletion MOS Devices Will consider next the JFET but first some additional information about MOS Devices

- Enhancement Mode n-channel devices $V_T > 0$
- Enhancement Mode p-channel devices $V_\tau < 0$
- Depletion Mode n-channel devices $V_T < 0$
- Depletion Mode p-channel devices $V_T > 0$

Enhancement and Depletion MOS Devices

n-channel p-channel Enhancement

- Depletion mode devices require only one additional mask step
- Older n-mos and p-mos processes usually had a depletion device and an enhancement device
- Depletion devices usually not available in CMOS because applications usually do not justify the small increased costs of processing
- The threshold voltage of either n-channel or p-channel devices is adjusted to a desired value by doing a channel implant before gate oxide is applied

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes • JFET
- Other Junction Devices

Special Bipolar Processes

• Thyristors **SCR** TRIAC

The JFET

(Parasitic p-channel device in basic bipolar process)

- Gate is both above and below channel
- With no bias, channel exists between D and S

The JFET

With V_{GS} =0, channel exists under gate between D and S

Under small reverse bias (depletion region widens and channel thins)

Under sufficiently large reverse bias (depletion region widens and channel disappears - "pinches off")

Under small reverse bias and large negative V_{DS} (channel pinches off)

Square-law model of p-channel JFET

$$
I_{D}=\begin{cases}0&V_{_{GS}}>V_{_{P}}\\ \dfrac{2I_{DSSp}}{V_{_{P}^{2}}}\bigg(V_{_{GS}}-V_{_{P}}-\dfrac{V_{_{DS}}}{2}\bigg)V_{_{DS}}&\qquad \, -0.3< V_{_{GS}}< V_{_{P}}\\ \left|I_{DSSp}\bigg(1-\dfrac{V_{_{GS}}}{V_{_{P}}}\bigg)^{2}&\qquad \ -0.3< V_{_{GS}}< V_{_{P}}&\qquad \ V_{_{DS}}< V_{_{GS}}-V_{_{P}}\\ \end{cases}.
$$

 $(I_{DSSD}$ carries negative sign)

- Functionally identical to the square-law model of MOSFET
- **JFET** is a depletion mode device
- Parameters I_{DSS} and V_{P} characterize the device
- I_{DSS} proportional to W/L where W and L are width and length of n+ diff
- \bullet \vee V_P is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device
- Must not forward bias GS junction by over about 300mV or excessive base current will flow (red constraint)
- Widely used as input stage for bipolar op amps

The JFET

Square-law model of n-channel JFET

$$
I_{D} = \begin{cases} 0 & V_{GS} < V_{P} \\ \frac{2I_{DSS}}{V_{P}^{2}} \left(V_{GS} - V_{P} - \frac{V_{DS}}{2} \right) V_{DS} & 0.3 > V_{GS} > V_{P} & V_{GS} - 0.3 < V_{DS} < V_{GS} - V_{P} \\ I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} & 0.3 > V_{GS} > V_{P} & V_{DS} > V_{GS} - V_{P} \end{cases}
$$

- Functionally identical to the square-law model of MOSFET
- **JFET** is a depletion mode device

 \int

- Parameters I_{DSS} and V_{P} characterize the device
- I_{DSS} proportional to W/L where W and L are width and length of n+ diff
- $\,$ V_P is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device
- Must not forward bias GS junction by over about 300mV or excessive base current will flow (red constraint)
- Widely used as input stage for bipolar op amps

The FET Devices

I_{DSS} proportional to W/L where W and L are width and length of n+ diff $\,$ (could define $\,$ I $_{\rm bss}$ $\rm \frac{W}{L}$) V_P and V_{TH} are analogous $\mathbf{I}_{\text{pos}} = \hat{\mathbf{I}}_{\text{pos}} \frac{\mathbf{W}}{T}$ L . The contract of L

$$
\frac{2\hat{I}_{\text{DSS}}}{V_{\text{P}}^2}
$$
 and μ C_{OX} are analogous

Basic circuit structures are the same (with different biasing implications)

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET

Other Junction Devices

Special Bipolar Processes

• Thyristors **SCR TRIAC**

The Schottky Diode

- Metal-Semiconductor Junction
- One contact is ohmic, other is rectifying
- Not available in all processes
- Relatively inexpensive adder in some processes
- Lower cut-in voltage than pn junction diode
- High speed

The MESFET

- Metal-Semiconductor Junction for Gate
- Drain and Source contacts ohmic, other is rectifying
- Usually not available in standard CMOS processes
- Must not forward bias very much
- Lower cut-in voltage than pn junction diode
- High speed

The Thyristor

A bipolar device in CMOS Processes

Have formed a lateral pnpn device !

Will spend some time studying pnpn devices

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices

Special Bipolar Processes

Thyristors

The good and the bad!

Thyristors

The good **SCRs Triacs**

The bad

Parasitic Device that can destroy integrated circuits

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices

Special Bipolar Processes

The SCR

Silicon Controlled Rectifier

- Widely used to switch large resistive or inductive loads
- Widely used in the power electronics field
- Widely used in consumer electronic to interface between logic and power

Consider first how this 4-layer 3-junction device operates

Not actually separated but useful for describing operation

Variation of Current Gain (β) with Bias for BJT

Note that current gain gets very small at low base current levels

Consider a small positive bias (voltage or current) on the gate (V_{GC} <0.5V) and a positive and large voltage V_F

Will have $V_{C1} \ge V_F - 0.5V$

Thus Q_1 has a large positive voltage on its collector

Since V_{BE1} is small, I_{C1} will be small as will I_{C2} , diode equation governs BE junction of Q₁

Now let bias on the gate increase (V_{GC} around 0.6V) so ${\sf Q}_{\rm 1}$ and ${\sf Q}_{\rm 2}$ in FA $\rm V_{C1}$ \geq $\rm V_{F}$ - $\rm 0.5 V$

From diode equation, base voltage V_{BE1} will increase and collector current I_{C1} will increase Thus base current I_{B2} will increase as will the collector current of I_{C2} $I_{B1} = I_{G} + \beta_1 \beta_2 I_{B1}$ Under assumption of operation in FA region get expression This is regenerative feedback (actually can show pole in RHP)

Very Approximate Analysis Showing RHP Pole

 $V_{G}S C_{B} + I_{B1} = I_{C2} + I_{G}$ $I_{C2}=\beta_{\rm l}\beta_{\rm 2}I_{B1}$ $I_{\scriptscriptstyle{B1}}R_{\scriptscriptstyle{B}E} = V_{\scriptscriptstyle{G}}$

 $V_{C1} \cong V_F$ - 0.6V

Under assumption of operation in FA region get expression

 $I_{B1} = I_{G} + \beta_1 \beta_2 I_{B1}$

What will happen with this is regenerative feedback?

If I_G is small (and thus β_1 and β_2 are small) I_F will be very small

If I_G larger (and $\beta_1\beta_2I_{B1} > I_G$), I_G can be removed and current will continue to flow $V_F =$

 $\mathsf{I}_{\mathsf{C}^1}$ will continue to increase and drive Q_1 into SAT

This will try to drive V_{A} towards 0.9V (but forced to be $\mathsf{V}_{\mathsf{F}}!)$

The current in V_F will go towards ∞

The SCR will self-destruct because of excessive heating !

Too bad the circuit self-destructed because the small gate current was able to I_{C1} will continue to increase and drive Q_1 into SAT
This will try to drive V_A towards 0.9V (but forced to be $V_F!$)
The current in V_F will go towards ∞
The SCR will self-destruct because of excessive heatin

A **IF**

 $Q₂$

IC2

 $\frac{1}{2}$ **I**_G $\left(\frac{1}{2}\right)$ I_G

 $\frac{1}{\sqrt{1-\frac{1}{\sqrt{1+\frac{1$

IB2

 Q_1

Consider a modified application by adding a load (depicted as R_L)

All operation is as before, but now, after the triggering occurs, the voltage V_F will drop to approximately 0.8 V and the voltage V_{CC} -.8 will appear across R_1

If V_{CC} is very large, the SCR has effectively served as a switch putting V_{CC} across the load and after triggering occurs, I_G can be removed!

But, how can we turn it off? Will discuss that later

As for MOSFET, Diode, and BJT, several models for SCR can be developed

The Ideal SCR Model

Consider the Ideal SCR Model

A

IF

Consider nearly Ideal SCR Model

The solution of these two equations is at the intersection of the load line and the device characteristics

Note three intersection points Two (upper and lower) are stable equilibrium points, one is not

When operating at upper point, V_F =0 so V_{CC} appears across R_1 We say SCR is ON When operating at lower point, I_F approx 0 so no signal across R_L We say SCR is OFF

When $I_G=0$, will stay in whatever state it was in

For notational convenience will drop subscript unless emphasis is needed

 $I_F = f_{11}(V_F, I_G)$ $I_F = f(V_F, I_G)$

Operation with the Ideal SCR

Now assume it was initially in the OFF state and then a gate current was applied

$$
V_{cc}
$$
\n
$$
V_{c}
$$
\n
$$
V_{F}
$$
\n
$$
V_{G}
$$

Now there is a single intersection point so a unique solution

The SCR is now ON

IGFREE REMOVING THE GATE CURRENT WILL THE SAMULA REMOVING THE PREVIOUS SOLUTION (which has 3 intersection points) but
I_{GFIG1}>0 will remain in the ON state previous solution (which has 3 intersection points) but it $I_F = f(V_F, I_G)$

Now there is a single inters

unique solution

The SCR is now ON

Removing the gate current

previous solution (which has 3

will remain in the ON state

Reduce V_{CC} so that V_{CC}/R_1 goes below I_H

This will provide a single intersection point

 V_{CC} can then be increased again and SCR will stay off

Must not increase V_{CC} much above V_{BGE0} else will turn on

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110V)

SCR will turn off whenever AC signal goes negative

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110V)

SCR will turn off whenever AC signal goes negative

 V_{CC} V_G $R_{\rm L}$ V_F V_F IG

This will provide a single intersection point

Operation with the actual SCR

Operation with the actual SCR

- Still two stable equilibrium points and one unstable point
- ΔV_F is quite constant and small (around 1V)
- If large current is flowing, power in anode can be large $(P_A \approx I_F \bullet 1 \text{ V})$
- Power in gate is usually very small

 I_H is the holding current l_L is the latching current (current immediately after turn-on) V_{BGF0} is the forward break-over voltage V_{BRR} is the reverse break-down voltage I_{GT} is the gate trigger current V_{GT} is the gate trigger voltage

SCR Terminology

Issues and Observations

 V_{CC}

- Trigger parameters (V_{GT} and I_{GT}) highly temperature dependent
- Want gate "sensitive" but not too sensitive (to avoid undesired triggering)
- SCRs can switch very large currents but power dissipation is large
- Heat sinks widely used to manage power
- Trigger parameters affected by both environment and application
- Trigger parameters generally dependent upon VF
- Exceeding V_{BRR} will usually destroy the device
- Exceeding V_{BGF0} will destroy some devices
- Lack of electronic turn-off unattractive in some applications
- Can be used in alarm circuits to attain forced reset
- Maximum 50% duty cycle in AC applications is often not attractive

Alarm Application

Performance Limitations with the SCR

- Very attractive properties as an electronic switch
- SCR is very useful

But:

- 1. Only conducts in one direction
- 2. Can't easily turn off (though not major problem in AC switching)

SCR is always off

SCR is ON less than 50% of the time (duty cycle depends upon V_G)

Often use electronic circuit to generate V_{G}

Performance Limitations with the SCR

Would be useful in many additional applications if:

- 1. Could conduct in both directions
- 2. Can easily turn off with I_G

Improvement Concept

- 1. Only conducts in one direction
- 2. Can't easily turn off (though not major problem in AC switching)

- 1. Could conduct in both directions
- 2. Generating two gate voltages referenced to different cathodes a bit cumbersome

Will investigate bi-directional devices in next lecture

Stay Safe and Stay Healthy !

End of Lecture 29