EE 330 Lecture 29 ### Bipolar Processes - Device Sizes - Parasitic Devices - JFET - Thyristors ### **Thyristors** SCR – Basic operation ### Fall 2024 Exam Schedule Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22 Final Exam Monday Dec 16 12:00 - 2:00 PM #### Review From Previous Lecture ### Two-port representation of amplifiers - Amplifier often unilateral (signal propagates in only one direction: wlog y₁₂=0) - One terminal is often common - "Amplifier" parameters often used - Amplifier parameters can also be used if not unilateral - One terminal is often common y parameters Amplifier parameters ### Relationship with Dependent Sources? #### Dependent sources from EE 201 Voltage Source **Current Source** ### Relationship with Dependent Sources? It follows that Voltage dependent voltage source is a unilateral floating two-port voltage amplifier with $R_{IN}=\infty$ and $R_{OUT}=0$ ### Relationship with Dependent Sources? It follows that Current dependent voltage source is a unilateral floating two-port transresistance amplifier with R_{IN} =0 and R_{OUT} =0 Review From Previous Lecture Dependent Sources $v_s = \mu v_x$ $\downarrow I_s = \alpha v_x$ $$v_s = \rho I_x$$ \downarrow Dependent sources are unilateral two-port amplifiers with ideal input and output impedances Dependent sources do not exist as basic circuit elements but amplifiers can be designed to perform approximately like a dependent source - Practical dependent sources typically are not floating on input or output - One terminal is usually grounded - Input and output impedances of realistic structures are usually not ideal Why were "dependent sources" introduced as basic circuit elements instead of two-port amplifiers in the basic circuits courses??? Why was the concept of "dependent sources" not discussed in the basic electronics courses??? ### **Topical Coverage Change** Will have several additional lectures on amplifier structures but will temporarily suspend discussion of amplifiers to consider Thyristors This is being done to get ready for the Thyristor laboratory experiments ### **Outline** ### Bipolar Processes - Parasitic Devices in CMOS Processes - JFET - Other Junction Devices ### Special Bipolar Processes ThyristorsSCRTRIAC #### Review from a Previous Lecture **B-B' Section** #### Review from a Previous Lecture **B-B' Section** # Will consider next the JFET but first some additional information about MOS Devices ### **Enhancement and Depletion MOS Devices** - Enhancement Mode n-channel devices V_⊤ > 0 - Enhancement Mode p-channel devices V_⊤ < 0 - Depletion Mode n-channel devices V_T < 0 - Depletion Mode p-channel devices V_⊤ > 0 ### **Enhancement and Depletion MOS Devices** - Depletion mode devices require only one additional mask step - Older n-mos and p-mos processes usually had a depletion device and an enhancement device - Depletion devices usually not available in CMOS because applications usually do not justify the small increased costs of processing - The threshold voltage of either n-channel or p-channel devices is adjusted to a desired value by doing a channel implant before gate oxide is applied ### **Outline** ### Bipolar Processes Parasitic Devices in CMOS Processes **JFET** Other Junction Devices ### Special Bipolar Processes ThyristorsSCRTRIAC (Parasitic p-channel device in basic bipolar process) - · Gate is both above and below channel - With no bias, channel exists between D and S With V_{GS} =0, channel exists under gate between D and S With V_{GS} =0, channel exists under gate between D and S Under small reverse bias (depletion region widens and channel thins) With V_{GS} =0, channel exists under gate between D and S Under sufficiently large reverse bias (depletion region widens and channel disappears - "pinches off") Under small reverse bias and large negative V_{DS} (channel pinches off) #### Square-law model of p-channel JFET $$\begin{split} I_{D} = & \begin{cases} 0 & V_{GS} > V_{P} \\ \frac{2I_{DSSp}}{V_{P}^{2}} \bigg(V_{GS} - V_{P} - \frac{V_{DS}}{2} \bigg) V_{DS} & -0.3 < V_{GS} < V_{P} & V_{GS} + 0.3 > V_{DS} > V_{GS} - V_{P} \\ I_{DSSp} \bigg(1 - \frac{V_{GS}}{V_{P}} \bigg)^{2} & -0.3 < V_{GS} < V_{P} & V_{DS} < V_{GS} - V_{P} \end{cases} \end{split}$$ (I_{DSSp} carries negative sign) - Functionally identical to the square-law model of MOSFET - JFET is a depletion mode device - Parameters I_{DSS} and V_P characterize the device - I_{DSS} proportional to W/L where W and L are width and length of n+ diff - V_P is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device - Must not forward bias GS junction by over about 300mV or excessive base current will flow (red constraint) - Widely used as input stage for bipolar op amps n-channel JFET (not available in this process) #### Square-law model of n-channel JFET $$I_{D} = \begin{cases} 0 & V_{GS} < V_{P} \\ \frac{2I_{DSS}}{V_{P}^{2}} \left(V_{GS} - V_{P} - \frac{V_{DS}}{2}\right) V_{DS} & 0.3 > V_{GS} > V_{P} & V_{GS} - 0.3 < V_{DS} < V_{GS} - V_{P} \\ I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2} & 0.3 > V_{GS} > V_{P} & V_{DS} > V_{GS} - V_{P} \end{cases}$$ - Functionally identical to the square-law model of MOSFET - JFET is a depletion mode device - Parameters I_{DSS} and V_P characterize the device - I_{DSS} proportional to W/L where W and L are width and length of n+ diff - V_P is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device - Must not forward bias GS junction by over about 300mV or excessive base current will flow (red constraint) - Widely used as input stage for bipolar op amps ### The FET Devices I_{DSS} proportional to W/L where W and L are width and length of n+ diff (could define $I_{DSS} = \hat{I}_{DSS} \hat{I}_{D$ V_P and V_{TH} are analogous $$\frac{2\hat{I}_{DSS}}{V_{P}^{2}}$$ and μC_{OX} are analogous Basic circuit structures are the same (with different biasing implications) ### **Outline** ### **Bipolar Processes** - Parasitic Devices in CMOS Processes - JFET Other Junction Devices ### Special Bipolar Processes ThyristorsSCRTRIAC ### The Schottky Diode - Metal-Semiconductor Junction - One contact is ohmic, other is rectifying - Not available in all processes - Relatively inexpensive adder in some processes - Lower cut-in voltage than pn junction diode - High speed ### The MESFET - Metal-Semiconductor Junction for Gate - Drain and Source contacts ohmic, other is rectifying - Usually not available in standard CMOS processes - Must not forward bias very much - Lower cut-in voltage than pn junction diode - High speed ### The Thyristor A bipolar device in CMOS Processes #### Consider a Bulk-CMOS Process Have formed a lateral pnpn device! Will spend some time studying pnpn devices ### **Outline** ### **Bipolar Processes** - Parasitic Devices in CMOS Processes - JFET - Other Junction Devices ### Special Bipolar Processes # **Thyristors** The good and the bad! ## **Thyristors** The good **SCRs** **Triacs** The bad Parasitic Device that can destroy integrated circuits ### **Outline** ### **Bipolar Processes** - Parasitic Devices in CMOS Processes - JFET - Other Junction Devices ### Special Bipolar Processes Thyristors ### The SCR #### Silicon Controlled Rectifier - Widely used to switch large resistive or inductive loads - Widely used in the power electronics field - Widely used in consumer electronic to interface between logic and power Usually made by diffusions in silicon Consider first how this 4-layer 3-junction device operates ### Operation of the SCR Not actually separated but useful for describing operation ### Variation of Current Gain (β) with Bias for BJT Note that current gain gets very small at low base current levels Consider a small positive bias (voltage or current) on the gate (V $_{\rm GC}$ < 0.5V) and a positive and large voltage $V_{\rm F}$ Will have $V_{C1} \ge V_F - 0.5V$ Thus Q₁ has a large positive voltage on its collector Since V_{BE1} is small, I_{C1} will be small as will I_{C2} , diode equation governs BE junction of Q_1 I_F will be very small Now let bias on the gate increase (V_{GC} around 0.6V) so Q_1 and Q_2 in FA $V_{C1} \ge V_F$ - 0.5V From diode equation, base voltage V_{BE1} will increase and collector current I_{C1} will increase Thus base current I_{B2} will increase as will the collector current of I_{C2} Under assumption of operation in FA region get expression $$I_{B1} = I_{G} + \beta_1 \beta_2 I_{B1}$$ This is regenerative feedback (actually can show pole in RHP) ### Very Approximate Analysis Showing RHP Pole $$V_G S C_B + I_{B1} = I_{C2} + I_G$$ $$I_{C2} = \beta_1 \beta_2 I_{B1}$$ $$I_{B1} R_{BE} = V_G$$ $$V_G = I_G \frac{R_{BE}}{sR_{BE}C_B + 1 - \beta_1\beta_2}$$ $$p = \frac{\beta_1 \beta_2 - 1}{R_{BE} C_B}$$ $$V_{C1} \cong V_F - 0.6V$$ Under assumption of operation in FA region get expression $$I_{B1} = I_G + \beta_1 \beta_2 I_{B1}$$ What will happen with this is regenerative feedback? If I_G is small (and thus β_1 and β_2 are small) I_F will be very small If I_G larger (and $\beta_1\beta_2I_{B1}>I_G$), I_G can be removed and current will continue to flow I_{C1} will continue to increase and drive Q₁ into SAT This will try to drive V_A towards 0.9V (but forced to be V_F !) The current in V_F will go towards ∞ The SCR will self-destruct because of excessive heating! Too bad the circuit self-destructed because the small gate current was able to control a lot of current! Consider a modified application by adding a load (depicted as R_I) All operation is as before, but now, after the triggering occurs, the voltage V_F will drop to approximately 0.8 V and the voltage V_{CC} -.8 will appear across R_L If V_{CC} is very large, the SCR has effectively served as a switch putting V_{CC} across the load and after triggering occurs, I_{C} can be removed! But, how can we turn it off? Will discuss that later SCR model $$I_{F} = f_{1}(V_{F}, V_{G})$$ $$I_{G} = f_{2}(V_{G})$$ As for MOSFET, Diode, and BJT, several models for SCR can be developed The Ideal SCR Model $$I_{F} = f_{1I}(V_{F}, I_{G})$$ $$I_{G} = f_{2I}(V_{G})$$ or $$I_{F} = f_{1IA} (V_{F}, V_{G})$$ $$I_{G} = f_{2I} (V_{G})$$ Consider the Ideal SCR Model I_H is very small I_{G1} is small (but not too small) Consider nearly Ideal SCR Model - On voltage approximately 0.9V - Major contributor to ON-state power dissipation - Even with large currents, P_{ON} is quite small #### **Operation with the Ideal SCR** $$I_F = f_1(V_F, V_G)$$ $$I_G = f_2(V_G)$$ $$V_{CC} = I_F R_L + V_F$$ $$V_{CC} = I_F R_L + V_F$$ $$I_F = f_{1I} (V_F, V_G)$$ The solution of these two equations is at the intersection of the load line and the device characteristics when I_G=0 Note three intersection points Two (upper and lower) are stable equilibrium points, one is not When operating at upper point, $V_F=0$ so V_{CC} appears across R_L We say SCR is ON When operating at lower point, I_F approx 0 so no signal across R_L We say SCR is OFF When I_G=0, will stay in whatever state it was in ### **Operation with the Ideal SCR** For notational convenience will drop subscript unless emphasis is needed #### Operation with the Ideal SCR Now assume it was initially in the OFF state and then a gate current was applied $$V_{CC} = I_F R_L + V_F$$ $$I_F = f (V_F, I_G)$$ Now there is a single intersection point so a unique solution The SCR is now ON Removing the gate current will return to the previous solution (which has 3 intersection points) but it will remain in the ON state #### **Operation with the Ideal SCR** Reduce V_{CC} so that V_{CC}/R_L goes below I_H This will provide a single intersection point V_{CC} can then be increased again and SCR will stay off Must not increase V_{CC} much above V_{BGF0} else will turn on ### **Operation with the Ideal SCR** Turning SCR off when I_G=0 ### Operation with the Ideal SCR Often V_{CC} is an AC signal (often 110V) SCR will turn off whenever AC signal goes negative #### Operation with the Ideal SCR Often V_{CC} is an AC signal (often 110V) SCR will turn off whenever AC signal goes negative #### Operation with the Ideal SCR Turning SCR off when I_G>0 This will provide a single intersection point But when V_{CC} is then increased SCR will again turn on ### **Operation with the Ideal SCR** Duty cycle control of load R_L ### **Operation with the Ideal SCR** Duty cycle control of load R_L ### **Operation with the actual SCR** #### Operation with the actual SCR - Still two stable equilibrium points and one unstable point - ΔV_F is quite constant and small (around 1V) - If large current is flowing, power in anode can be large $(P_A \approx I_F \bullet 1V)$ - Power in gate is usually very small #### **Operation with the actual SCR** To turn on, must make I_G large enough to have single intersection point # V_{BGF0} I_H is the holding current I_L is the latching current (current immediately after turn-on) V_{BGF0} is the forward break-over voltage V_{BRR} is the reverse break-down voltage I_{GT} is the gate trigger current V_{GT} is the gate trigger voltage **SCR Terminology** Issues and Observations - Trigger parameters (V_{GT} and I_{GT}) highly temperature dependent - Want gate "sensitive" but not too sensitive (to avoid undesired triggering) - SCRs can switch very large currents but power dissipation is large - Heat sinks widely used to manage power - Trigger parameters affected by both environment and application - Trigger parameters generally dependent upon VF - Exceeding V_{BRR} will usually destroy the device - Exceeding V_{BGF0} will destroy some devices - Lack of electronic turn-off unattractive in some applications - Can be used in alarm circuits to attain forced reset - Maximum 50% duty cycle in AC applications is often not attractive # Alarm Application ### **Performance Limitations with the SCR** - Very attractive properties as an electronic switch - SCR is very useful #### But: - 1. Only conducts in one direction - 2. Can't easily turn off (though not major problem in AC switching) ### **Observations about Basic SRC Circuit** V_{CC} SCR is always off ### **Observations about Basic SRC Circuit** Assume V_{CC} is an AC signal (often 110V) and $\underline{V_G}$ is static V_{CC} R_L ### **Observations about Basic SRC Circuit** SCR is ON less than 50% of the time (duty cycle depends upon V_G) Often use electronic circuit to generate V_G ### Performance Limitations with the SCR - · Very attractive properties as an electronic switch - SCR is very useful #### But: - 1. Only conducts in one direction - 2. Can't easily turn off (though not major problem in AC switching) Would be useful in many additional applications if: - 1. Could conduct in both directions - 2. Can easily turn off with I_G ### Improvement Concept - 1. Only conducts in one direction - 2. Can't easily turn off (though not major problem in AC switching) - 1. Could conduct in both directions - 2. Generating two gate voltages referenced to different cathodes a bit cumbersome Will investigate bi-directional devices in next lecture Stay Safe and Stay Healthy! ## End of Lecture 29